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Abstract

Saliency maps provide a biologically plausible model of visual attention based on par-

allel preattentive features. The goal of past research with saliency maps often is to

find regions of interest in a scene under various conditions or top-down effects. Re-

cent publications suggest learning the significance of preattentive feature from visual

scanpaths. Our research implements a computational model of saliency maps based

on dynamical systems and then proposes a method of recovering feature weights from

points of focal attention. Performance of the learning model is evaluated by comparing

learnt focal attention to the training data. Finally, suggestions are made for improving

the learning system during future research.
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Chapter 1

Introduction

By existing in the physical world, we as humans are subject to vast amounts of sensory

input. Indeed the unified theory of information describes the environment as composed

purely of information, only some of which is returned by one of the four senses. This is

apparent when comparing capabilities of identical sensors across species. Considering

a flower, the ultraviolet colours seen by an insect create a vastly different picture from

what humans observe. Since viewing the same world leads to different understandings,

the senses can be considered biological filters selectively sampling from the seemingly

infinite pool of available information. But even with these natural filters there remains

an excessive amount of complex data to fully analyse every bit in detail.

The visual system transforms incoming light into a descriptive representation of the

environment. However, the resulting image is excessively complex to fully model and

effectively process. A common example is a treed nature scene. Each tree has many

branches and leaves, and in turn each of these is defined by a combination of shape,

colour, and texture. Completely representing every scene detail as an internal model

is arguably impossible. Instead the image is further simplified to contain only the

most relevant information, where relevancy is often task-based. For instance, walking

through a wooded area requires only spatial tree location while allowing the leaves to

be ignored (Parkhurst, 2002).

Attention directs focus to only a portion of the available information and has long

been compared to a spotlight illuminating a small area with high resolution (Eriksen

and Hoffman, 1972; Treisman and Gelade, 1980). In addition to spatially selecting

1



Chapter 1. Introduction 2

the most interesting regions, attention controls information flow through the visual

neural pathway and subsequently shifts focus between important parts of the scene

(Tsotsos et al., 1995). Within selective attention there are two mechanisms to decide

what constitutes interesting and relevant: top-down and bottom-up control.

Top-down control volitionally directs attention in order to complete some goal. Of-

ten associated with visual search, top-down control requires varying degrees of com-

plexity according to the task. Single feature recognition triggers an automatic response

because it is an essentially free product of the visual processing system. Targets based

on a conjunction of features require a serial search of responses and possibly interac-

tion with higher level cortical functions for object recognition (Treisman and Gelade,

1980). Top-down visual attention has historically been difficult to model and imple-

ment in a system because it is subjectively based on the task and individual.

The second attentional mechanism, bottom-up control, has a more analytical foun-

dation. Scenes are decomposed into a set of fundamental visual features such as hue,

intensity, orientation, and motion. The features, also known as cues, correspond di-

rectly to capabilities found within the first level of visual processing and result in a

measure of interest for locations in the scene. This measure is known as saliency.

Unlike top-down, bottom-up control is a subconscious operation where the points of

highest saliency “pop-out” of the background and capture focal attention (Treisman

and Gelade, 1980; Braun and Julesz, 1998).

The key difference between the two schemes is that of conscious versus subcon-

scious control, but in reality focal attention is most often a balance between bottom-up

and top-down mechanisms. Even in a demanding visual search the bottom-up system

remains aware of changes in the scene that could signal danger or prompt a change

of task. An example is attention captured by a bright flash of light in the peripheral

vision.

One preferred model of bottom-up control is found in saliency maps. First pro-

posed by Christof Koch and Shimon Ullman (Koch and Ullman, 1984, 1985), saliency

maps provide a biologically plausible model of attentional selection based on visual

features.
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1.1 Project

1.1.1 Research Focus

It is understood that not all features contribute equally to attentional selection and that

some elements are more heavily weighted. In past work with saliency maps, feature

weighting has been ignored, chosen to detect specific target, or roughly approximated

from image data. The goal of this project is to create a biologically plausible visual

attentional system based on bottom-up saliency maps and learn the relative weighting

of features from eye tracking data. By examining the way features combine in saliency

maps, we hope to contribute to a better understanding of the biological foundation of

visual attention.

1.1.2 Thesis Overview

Chapter 1 provides an introduction to attention and the motivation for undertaking a

study of saliency maps and feature weights.

Chapter 2 discusses key background research in focal attention and presents a theoret-

ical review of saliency maps.

Chapter 3 explores the computational attention model developed for this project. In-

cluded are methods, parameter selection, and observations.

Chapter 4 looks at a method of learning saliency map feature weights with the least

squares regression algorithm.

Chapter 5 details the eye tracking hardware, software implementation, and open source

libraries use in the project.

Chapter 6 presents experiments where feature weights are learnt from points of focal

attention. The chapter analyses results for each experiment.

Chapter 7 relates experimental findings to the computational model and learning sys-

tem. Opportunities for future research are mentioned.

Chapter 8 concludes the paper by summarising the results and detailing the next step

in continuing the research.



Chapter 2

Background

2.1 Introduction

This chapter provides an historical overview of several key studies in attention. Char-

acteristics of attention are defined followed by three theories leading to the saliency

map model implemented for this research. The principles of the model are next dis-

cussed, ending with four approaches to construct the saliency map from elementary

features.

2.2 Highlights of Attentional Research

Psychologists, cognitive scientists, and engineers extensively studied focal attention

during the twentieth century. Sigmund Freud stated in his influential work The In-

terpretation of Dreams that the state of consciousness depends on the function of fo-

cused attention (Freud, 1915). The importance of attention was later reiterated during

the late 1950s when the psychologist Schachtel published in his work Metamorphosis

that focal awareness is the highest form of consciousness and the basis of perception

(Schachtel, 1959).

4



Chapter 2. Background 5

2.2.1 Attention Characteristics

Studying children at play led Schachtel to believe that understanding reality is not a

biological need but rather a result of expressing interest in the environment. From this

research he defined several characteristics of attention: attention is directional, atten-

tion is placed on a particular object, thought, or feeling, and attention excludes from

consciousness anything not of focus (Schachtel, 1959). The first point was popularised

by the spotlight analogy; however, the third point later came under question with some

studies showing support (Posner, 1980) and others suggesting that targets of unary fea-

tures can be identified even with attention directed elsewhere (Treisman and Gelade,

1980).

Schachtel further stated that focal attention implies mentally taking hold of an ob-

ject and working to fully understand it from many sides. To accomplish this, attention

is directed not in a single sustained act but rather through several shorter approaches

where each examines a different aspect or relation (Schachtel, 1959). Work on men-

tally understanding objects was a prelude to later studies about the importance of visual

attention for object analysis and recognition.

2.2.2 Filter Theory of Selective Attention

Working on object identification and classification during the early 1960s, Minsky

(1961) noted how passive classification becomes less adequate with complicated prob-

lems. He further reasoned that visual identification requires full attention to segmented

parts of an image. Concerned with the same problem, Broadbent (1958) published the

filter theory of selective attention. The theory proposes a two stage framework of visual

processing. To solve problems of information complexity, the first stage computes sim-

ple features in parallel across the entire field. The second stage involves higher level

analysis such as object recognition. As the second stage is much more computationally

intensive, it receives only a portion of the available data from the first stage. Selecting

a data subset is handled by an attention mechanism and any remaining information is

discarded (Broadbent, 1958).
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2.2.3 Information Processing Approach

Early studies regarded attentional selection as a form of energy allocation (Solley and

Murphy, 1960). During the mid 1960s, Ulrich Neisser (1966) instead proposed an in-

formation processing stance where attention is defined as an “allotment of analysing

mechanisms to a limited region of the field.” Following a dual-layer architecture out-

lined by Broadbent, Neisser organised preattentive processes that operate globally on

an image into a single layer of parallel operations. Preattentive processes, he reasoned,

directly control two general classifications of movement: focal redirection based on

extracted cues and guided movements such as walking.

2.2.4 Feature Integration Theory

Feature integration theory developed by Anne Treisman further outlined the impor-

tance and method of preattentive feature extraction. According to the theory, simple

features are automatically found in parallel across the entire visual field and separated

by colour, orientation, spatial frequency, intensity, and direction of motion. Impor-

tantly, extraction of simple features is relatively unaffected by the presence of detrac-

tors. The separate representations are later combined with the resulting salient loca-

tions attended in serial (Treisman and Gelade, 1980).

A notable component of the theory is that focal attention is required to detect any

objects defined by a conjunction of properties. Treisman proposed that focal attention

is the method for merging features into singular objects, and that without either atten-

tion or top-down criteria, incorrect combinations can form illusionary results (Treis-

man and Gelade, 1980).

The same year a paper by Michael Posner explained how eye saccade movements

can be directed by preattentive results prior to full awareness of the stimuli. In exper-

iments, subjects exhibited saccadic eye movement toward a region yet were unable to

describe the contents. A comparison of orienting from memory and to external stimuli

noted that while eye saccades can be driven by input, search movements are driven by

an internal search plan (Posner, 1980). One form of search plan is a feature weight

model directing visual attention.
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2.3 Saliency Model

Koch and Ullman (1984, 1985) developed saliency maps to provide an explanation of

bottom-up attentional shift while leveraging the existing two-stage model. Figure 2.1

provides a schematic view of the model. Similar to feature integration theory, the visual

scene is first decomposed along parallel paths into topographic feature maps. Called

early representations in the first model descriptions, these provide spatial information

about hue, intensity, and edge orientation. Some implementations also mention motion

as a basic feature (Koch and Ullman, 1984; Hikosaka et al., 1996) but the majority

concentrate on static images.

2.3.1 Colour-Opponents

In our visual system, the retina contains three types of cones sensitive to long, medium,

and short wavelengths. Named L, M, and S respectively, the lateral geniculate nucleus

(LGN) combines information from the cones into colour-opponents between specific

cone pairs. Two classes of chromatic opponency neurons exist in the retina and LGN.

Red-green opponent neurons respond to differences between long and medium cones

while blue-yellow neurons compute the difference between short cones and luminance.

A third type of neuron determines luminance by summing long and medium cones

(Engel et al., 1997; Schluppeck and Engel, 2002). Opponency is mathematically sum-

marised below. Experiments with functional magnetic resonance imaging showed that

the response of red-green and blue-yellow colour-opponents is much greater than that

of luminance stimuli (Engel et al., 1997). The results were later confirmed by addi-

tional studies into neural signals (Schluppeck and Engel, 2002).

red-green opponents: L � M

blue-yellow opponents: S � �
L � M �

intensity opponents: L � M

2.3.2 Centre-Surround

Neurons in the visual cortex strongly depend on both the stimuli and its surrounding

region. It is not so much the stimuli itself but rather its contrast with the surround that
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Figure 2.1: Schematic model of the saliency map architecture.
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(a) (b) (c) (d)

Figure 2.2: Colour opponent cells (a) red centre / green surround, (b) green centre / red

surround, (c) yellow centre / blue surround, and (d) blue centre / yellow surround.

elicits the greatest response. But while high contrast between centre and surround has

a reinforcing effect, low contrast inhibits response (Levitt and Lund, 1997). The retina,

LGN, and primary visual cortex act in concert to detect regions that stand out from the

surround (Itti et al., 1998). Figure 2.2 illustrates the centre-surround representation of

red-green and blue-yellow colour opponents.

Gaussian pyramids provide a natural way of implementing a centre-surround pro-

cess for colour-opponents and intensity. Each pyramid level represents an increas-

ingly low-pass filtered sample of the feature map (Burt and Adelson, 1983) The cross-

spatial difference between coarse and fine scales identifies scene locations that stand

out strongly from the surrounding area (Itti et al., 1998). Centre-surround maps are

created for each feature at multiple spatial scales.

2.3.3 Combining Features

With centre-surround differences representing salient locations for each feature, the

results are then combined into a single global saliency map. Combination is inherently

difficult as features represent non-comparable criteria. For instance, there is not an

obvious quantitative relationship between units of red hue and motion. Four general

methods of combination have been proposed and below each is discussed in turn. Itti

and Koch (1999a) provide illustrative examples depicting results for each method.
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2.3.3.1 Fixed Range Summation

A simple but naı̈ve approach is to linearly sum the feature maps without preconceptions

about the relative importance of each cue (Koch and Ullman, 1984). This disregards

human studies showing that features contribute to varying degrees depending on the

task (Francolini and Egeth, 1979; Folk et al., 1992; Wolfe, 1994). Reliance on the task

however requires integration of top-down knowledge into the system while the tradi-

tional saliency map model is purely bottom-up. There are other problems with fixed

range summation as well. Taking into account the multiresolution centre-surround for

hue and intensity, the large number of opponent maps can effectively overwhelm other

highly saliency locations present in only a few feature maps. This is the case for mo-

tion, considered to be a strong determinant of visual attention but directed by a single

saliency map. Instead, the feature maps are summed across scale and normalised as a

single conspicuity map for each feature. The conspicuity maps define the final saliency

map(Itti et al., 1998; Funk, 2004).

2.3.3.2 Supervised Learning

When using saliency maps to detect a specific target, the fixed range summation tech-

nique is inappropriate as some features are more important than others. A gradient

learning method compares response inside and outside of the target area. Features

where the saliency is greater inside of the target region than outside contribute a greater

proportion to the overall attention and are weighted higher accordingly. The weighted

features are then summed into a single saliency map. A mathematical algorithm for

learning the weight w
�
M � of a feature map M contains three steps (Itti and Koch,

1999a).

1. Find the maximum and minimum saliency values Mglob and mglob over the entire

visual field.

2. For the target region, find the internal and external maximum saliency values Min

and Mout respectively.

3. An iterative learning routine increases the weights of feature maps having higher

saliency inside of the target region. For other features the weights decay to a
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small value. Given a learning rate η � 0

w
�
M ��� w

�
M ��� η

Min � Mout

Mglob � mglob
(2.1)

While this technique learns all feature weights simultaneously, they are target spe-

cific and can not be directly applied to other applications.

2.3.3.3 Content-based Weighting

One method of implementing an unsupervised learning scheme is by replicating in-

tramodal competition. The goal is to lower weighting of feature maps having numerous

peaks of similar saliency while increasing the response of those features having only

a few strongly salient locations. All features are then combined into a single saliency

map with weighted summation. Itti and Koch (1999a) present an algorithm for this

approach:

1. Normalise the feature maps for relative strength comparison.

2. Find the global maximum M and average of all local maxima m̄.

3. Multiply the feature map by
�
M � m̄ � 2

Multiplying normalised feature maps by the squared difference between global

maximum and average local maxima enhances those maps where active regions stand

out strongly. The result is a weighting based on content rather than training data (Itti

et al., 1998). While following the neurological principle of intramodal competition, it

is not a biologically plausible implementation because average saliency requires fully

interconnected neural pathways.

2.3.3.4 Iterative Local Competition

The primary visual cortex is organised with short localised connections and longer

cortical connections extending 6-8 millimeters. Amari (1977) covered a biologically

plausible model of intramodal competition using local neural connections to provide

strong excitation and the longer connections for broad inhibition. To simulate this ar-

rangement, feature maps are convolved by a two-dimensional difference of Gaussian
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(DoG) kernel defined by equation 2.2 and illustrated in figure 2.3. Iteratively convolv-

ing normalise feature maps, as shown by equation 2.3, enhances salient locations that

stand out strongly while inhibiting areas of little or uniform saliency (Itti and Koch,

1999a). Convolution introduces dynamic competition within the feature maps so that

only areas of highest saliency remain. Feature maps are linearly summed to create a

final saliency map.

DoG
�
x � y �
	 c2

exc
2πσ2

exc
e �

x2 � y2

2σ2
exc � c2

inh

2πσ2
inh

e �
x2 � y2

2σ2
inh (2.2)

M �� M � M � DoG � Cinh �� 0 (2.3)

The DoG kernel consists of an inhibition Gaussian function with a large variance

σinh subtracted from a excitation Gaussian of smaller variance σexc. The convolution

variable Cinh contributes a system decay for the case when inhibition otherwise bal-

ances excitation. The literature suggests Cinh 	 0 � 2.

2.3.4 Attentional Selection

The result of each combination strategy is a single saliency map composed of the ele-

mentary image features. Often containing several regions of interest, a winner-takes-all

(WTA) process directs attention to the location of greatest saliency. Focal selection is

not permanently captured by a single point but rather it is a dynamic process where

gaze shifts in serial between salient locations.

The visual system implements attentional shift by imposing an inhibition of returns

at the current point of focus. This locally suppresses saliency so that a new focal point

is selected by the WTA network. Figure 2.4 shows a stimuli and the resulting saliency

map both before and after inhibition of returns. To maintain dynamics the temporary

inhibition decays over several time steps with a study by Posner (1980) reporting that

subjects returned to the original fixation point after 500ms.
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Figure 2.3: Cross section of an example (a) excitation function, (b) inhibition function,

and (c) difference of Gaussian (DoG) kernel. Note the strong excitation peak and broad

surrounding inhibition.
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(a) (b)

Figure 2.4: Inhibition of returns before and after attentional selection.

2.4 Dynamical Systems

A dynamical system is one in which a change of state occurs over time. In a first

order dynamical system the current state depends on the previous state and a velocity

component computed as a scaled derivative of the input. The scaled derivative tells

how much to change from the previous state.

The first order dynamical system is mathematically described by equation 2.4. If

the scale parameter τ equals one then the system fully changes to the next state in one

time step; with τ less than one the system changes state over successive periods. The

variable u
�
x � t � signifies the saliency map at a particular instance of time and S

�
x � t � is

an external system stimulus. The variable h represents a baseline activation level for

the system. (Vijayakumar et al., 2001).

τu̇
�
x � t �
	 � u

�
x � t ��� S

�
x � t ��� h � ∑

x �
w
�
x � x ��� σ � u � x ��� t ��� (2.4)

Dynamical systems underlie the saliency model and provide a biologically plau-

sible explanation for saliency competition and winner-takes-all mechanisms. While

the software implements attentional selection as a maximum operator across the entire

saliency map, this actually simulates a dynamical systems approach where saliency

values build over time until one region surpasses an attentional threshold.
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Similarly, decaying inhibition of returns is automatically handled within a dynami-

cal systems approach. Here the τ parameter controls the rate at which inhibition decays

to its zero value state.

2.5 Conclusion

The most widely accepted computational model of visual attention is that of saliency

maps. Based on long standing principles found in the filter theory of selective attention

and feature integration theory, saliency maps explain a biologically plausible dynam-

ical system of attentional shift. Of the four methods for combining features into a

saliency map, the more recent iterative local competition provides the most biologi-

cally sound and scalable approach. Saliency maps are inherently bottom-up though

there is ongoing research into integration of top-down control.



Chapter 3

Computational Model

3.1 Introduction

The second chapter introduced the saliency map model of visual attention and sev-

eral key theories leading to its development. This chapter furthers the understanding

of saliency maps by undertaking a step-by-step computational implementation of the

model. Illustrating the text are images generated by the completed software system.

3.2 Early Visual Features

The first stage of the computational model is creating preattentive feature maps for

hue, intensity, and motion. Many previous studies of saliency maps used static images

and did not consider motion; however, this implementation supports dynamic scenes

captured from a video camera or MPEG file.

3.2.1 Intensity

In experiments there is often a strong correlation between intensity and attention (Koch

and Ullman, 1984; Braun and Julesz, 1998; Itti and Koch, 1999b; Miau and Itti, 2001;

Walther et al., 2002; VanRullen, 2003). Einhäuser and König (2003) recently published

research challenging the causal role of intensity in visual attention by arguing that

luminance contrast is merely an abstraction of hue. Since these findings are new and

16
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(a) (b)

Figure 3.1: (a) A colour spectrum and (b) its intensity map. Images originate from the

visual attention software.

contradict traditional understanding of visual attention, this implementation continues

to use luminance as a discrete factor. A colour spectrum and its intensity image is

shown in figure 3.1.

A mathematical definition of intensity for each pixel is the average of the red (R),

green (G), and blue (B) colour channels.

I 	 R � G � B
3

(3.1)

3.2.2 Hue

To decorrelate hue from intensity, the red, green, and blue planes are first normalised by

the intensity image (I) at all points where intensity is greater than 10% of its maximum

value (Itti et al., 2001). This is mathematically described by (3.2)–(3.4). Variations

in hue are not perceivable under very low luminance so pixels at the lower range of

intensity are excluded from normalisation. Figure 3.2 shows a colour spectrum and its

extracted hue planes.
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(a) (b)

(c) (d)

Figure 3.2: (a) A colour spectrum and its (b) red channel, (c) green channel, and (d)

blue channel. Images originate from the visual attention software.

r 	 255
3

R
I

(3.2)

g 	 255
3

G
I

(3.3)

b 	 255
3

B
I

(3.4)

Equations 3.5–3.8 create four broadly tuned colour planes with the effects of lumi-

nance removed (Itti et al., 2001). Rather than the normalised RGB planes, these hue

channels are used in all further processing.
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r ��	 r � g � b
2

(3.5)

g ��	 g � r � b
2

(3.6)

b � 	 b � r � g
2

(3.7)

y ��	 r � g
2

�  r � g 
2

� b (3.8)

Equation 3.8 can be greatly simplified by comparing the three possible relations

between red and green components in the numerator.

r � g :
�
r � g � � �

r � g �
	 2g (3.9)

r � g :
�
r � g � � �

g � r �
	 2r (3.10)

r 	�	 g :
�
r � r � � �

g � g �
	 2r 	�	 2g (3.11)

From (3.9)–(3.11), the numerator of (3.8) reduces to 2 � min
�
r� g � . Equation 3.12

provides the updated derivation of the yellow channel. It is surprising to not find the

simplification published in any papers.

y � 	 min
�
r� g � � b (3.12)

3.2.3 Motion

A vector field measuring motion between consecutive image frames defines optical

flow. With both intensity and directional information, optical flow provides a more

complete motion model than simpler solutions such as the difference between frames.

Dedicated hardware like that used by Vijayakumar et al. (2001) commonly implements

flow calculations with a block matching method.

While optical flow yields the most complete information, this system instead relies

on a motion history algorithm. A history buffer retains the difference between several

successive frames. Buffered values decay over time so taking the gradient of motion

history returns a reliable indicator of motion. Output from the calculation is a feature

map highlighting moving objects as salient and ignoring static elements in the scene.

The OpenCV library includes a robust implementation of motion history analysis.



Chapter 3. Computational Model 20

3.3 Centre-Surround

After computing hue and intensity feature maps, the next step is to determine areas of

contrast. This is accomplished with a centre-surround model of Gaussian pyramids as

mentioned in the second chapter.

3.3.1 Gaussian Pyramids

Originally developed for image compression, Gaussian pyramids act as low-pass filters

computing pixel values as a weighted average of localised blocks. The dimension of

each pyramid level is one half that of the previous such that the interval between levels

is one octave. Burt and Adelson (1983) present algorithms for Gaussian pyramids;

implementations are included in the Open Computer Vision software library.

Eight-level Gaussian pyramids for the intensity and colour maps are created for

centre-surround computation. Figure 3.3 shows six Gaussian pyramid levels for the

broadly tuned red, green, blue, and yellow colour channels defined by equations 3.5,

3.6, 3.7, and 3.12.

3.3.2 Centre-Surround Calculation

Centre-surround is calculated as a difference across scale where scale refers to indi-

vidual Gaussian pyramid levels. Because the difference is computed by matrix sub-

traction, all pyramid levels are first interpolated to the original image size. The centre

is a pixel at scale c ��� 2 � 3 � and the surround value is the corresponding pixel at scale

s 	 c � δ where δ ��� 3 � 4 � (Itti et al., 1998). The spatial difference between two maps

is often defined in literature by the operator symbol  .

3.3.3 Intensity Centre-Surround Opponents

Using equation 3.13, four centre-surround feature maps are created for c �!� 2 � 3 � and

δ �"� 3 � 4 � . Neural detectors are sensitive to either a bright centre and dark surround or

conversely a dark centre with bright surround. Absolute value of the spatial difference
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h

Figure 3.3: From the (a) original image the (b) red, green, blue, and yellow colour

channels are created. The first six Gaussian pyramid levels (c-h) are shown. Images

originate from the visual attention software.
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includes both configurations in the centre-surround maps. Figure 3.4 illustrates centre-

surround of intensity opponents.

I
�
c � s �#	� I � c �� I

�
s �$ (3.13)

3.3.4 Hue Centre-Surround Opponents

Red-green and blue-yellow colour-opponent maps are similarly created with the same

spatial scales as intensity. Either red or green (blue or yellow) exists as the centre

with the opposing colour in the surround. Centre-surround map R G
�
c � s � defined by

equation 3.14 encompasses both red/green and green/red opponency while BY
�
c � s �

includes blue/yellow and yellow/blue opponency in (3.15). Figures 3.5 and 3.6 show

hue centre-surround opponents generated for red-green and blue-yellow respectively.

R G
�
c � s �
	� � R � c � � G

�
c �%�� �

G
�
s � � R

�
s ���& (3.14)

BY
�
c � s �
	� � B � c � � Y

�
c ���� �

Y
�
s � � B

�
s ���& (3.15)

3.4 Difference of Gaussian

Chapter two described several approaches to create a saliency map from multiple fea-

tures. This implementation uses iterative convolution with a difference of Gaussian

function because it provides a biologically plausible dynamical system of feature com-

petition.

Normalised red-green opponent, blue-yellow opponent, intensity opponent, and

motion feature maps are iteratively convolved by a large difference of Gaussian (DoG)

kernel having strong local excitation and weaker broad inhibition. Application of the

DoG dynamically reinforces regions of high saliency while simultaneously suppress-

ing areas of lower or uniform saliency. Competition also eliminates noise in the feature

maps. Shown in Figure 3.7, there are three bands of interaction between salient areas.

Stimuli located between X0 and Xa reinforces the X0 value. Between Xa and Xb stimuli

have an inhibitory effect while salient regions beyond Xb cause negligible change to X0

(Amari, 1977).
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(a)

(b) (c)

(d) (e)

Figure 3.4: Intensity opponents at multiple centre-surround spatial scales: (a) original

opponent image, (b) c=2 s=5, (c) c=2 s=6, (d) c=3 s=6, and (e) c=3 s=7. Images

originate from the visual attention software.



Chapter 3. Computational Model 24

(a)

(b) (c)

(d) (e)

Figure 3.5: Colour opponents for red-green and green-red at multiple centre-surround

spatial scales: (a) original opponent image, (b) c=2 s=5, (c) c=2 s=6, (d) c=3 s=6, and

(e) c=3 s=7. Images originate from the visual attention software.
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(a)

(b) (c)

(d) (e)

Figure 3.6: Colour opponents for blue-yellow and yellow-blue at multiple centre-

surround spatial scales: (a) original opponent image, (b) c=2 s=5, (c) c=2 s=6, (d)

c=3 s=6, and (e) c=3 s=7. Images originate from the visual attention software.
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Figure 3.7: Difference of Gaussian function showing three regions of interaction. Be-

tween X0 and Xa stimuli are excitory while between Xa and Xb the same stimuli is

inhibitory. Stimuli have negligible effect beyond Xb.



Chapter 3. Computational Model 27

3.4.1 Gaussian Function

The difference of Gaussian kernel provides a strong cumulative effect over multiple

iterations. Selecting excitation and inhibition Gaussian functions requires insight into

the size and proximity of expected targets. Narrow excitation regions with broad, shal-

low inhibition are most appropriate for natural scenes where the targets are small and

may be closely spaced. Intra-feature competition with such a kernel requires a large

number of iterations to suppress noise and isolate salient regions; however, a greater

number of features are retained. Assuming all other Gaussian parameters remain con-

stant, a wider DoG excitation function results in a stronger inhibition response that

enables fewer convolution iterations. This is best suited to large and well defined tar-

gets.

Itti and Koch (1999a) suggest an excitation function with cexc 	 0 � 5 and σexc 	 2%

of the image width paired with an inhibition function with cinh 	 1 � 5 and σinh 	 25%

of the image width. Plotted in figure 3.8, this results in a narrow excitation band of

shallow inhibition. With the suggested parameter values, they found ten iterations

yields the best tradeoff between computation time and effectiveness. Attempting to

decrease run time, we reduced the required number of convolutions by strengthening

the excitation and inhibition functions. Setting cexc 	 1 � 5 and cinh 	 3 � 5 increases the

DoG kernel excitation value by a factor of ten and allows the number of convolutions

to be halved from ten to five.

To test several Gaussian functions, we restricted the search space by fixing the in-

hibition standard deviation at σinh 	 25%. Figures 3.9, 3.10, and 3.11 show multiple

convolutions of an image using σexc 	 2% and σexc 	 5% kernels. The first test ex-

amines response of a kernel with cexc 	 1 � 5, cinh 	 3 � 5, and σexc 	 2%. A second test

retains cexc 	 1 � 5 and cinh 	 3 � 5 but increases σexc to 5% of image width. For com-

parison, a third test uses cexc 	 0 � 5 and cinh 	 1 � 5 with σexc 	 5%. As expected, the

stronger Gaussian kernels resulted in much faster feature suppression. Most visible in

the red-green opponent maps of figure 3.9, the first convolution with the stronger ker-

nels is roughly equivalent to ten iterations with the third set of values. The blue-yellow

and intensity feature maps of figures 3.10 and 3.11 show a risk of over-suppression

where smaller salient features are discarded. Further tests confirmed over-suppression
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of small targets in the experimental scenes.

Based on the results, we selected a σexc 	 5% curve using the original cexc 	 0 � 5
and cinh 	 1 � 5 values proposed by Itti and Koch. In scenes with distinctly salient

regions and limited noise, the number of convolutions can be reduced to five without

any adverse effect. Natural scenes are better suited to maintain σexc 	 2% with ten

iterations. The complete difference of Gaussian function is shown in equation 3.16.

Excitation and inhibition sigma values assume an image width of 384 pixels as used in

this system.

DoG
�
x � y ��	

�
0 � 5 � 2

2π � � 19 � 2 � 2 e �
x2 � y2

2 '�( 19 ) 2 * 2 �
�
1 � 5 � 2

2π � 962 e �
x2 � y2

2 '�( 96 * 2 (3.16)

3.4.2 Convolution Algorithm

Convolving an image steps a weighting kernel across every pixel. An algebraic im-

plementation in the image domain required in excess of two hours to complete ten

iterations of a 768x768 pixel kernel on a 768x512 pixel image. For performance we

instead selected to work in the signal domain using fast Fourier transforms. Con-

volution in the signal domain completes in a fractional second, with numerical results

presented in chapter five. There are three steps to the FFT convolution algorithm (Press

et al., 1992):

1. Transform both the image and kernel.

2. Multiply the two Fourier transforms component by component.

3. Compute the inverse Fourier transform to convolve the image.

3.5 Winner-Takes-All Network

After convolution there are four red-green opponent maps, four blue-yellow maps, four

intensity feature maps, and a single motion feature map. The opponent maps are first

linearly summed across scale to return a single conspicuity map for each feature. Mo-

tion already exists as a single map so is used directly. There are three reasons for
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Figure 3.8: Difference of Gaussian kernel (a) selected by Itti and Koch (b) used in this

project.
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Figure 3.9: Difference of Gaussian convolution of red-green opponents using three dif-

ferent excitation sigma values. Images (a, i, and q) show the original image and (b, j,

and r) shows the 3-7 centre-surround red-green opponent image with zero convolutions.

Views (c–h) show the red-green opponent map with 1, 2, 3, 4, 5, and 10 convolutions

respectively. The excitation function has a standard deviation of 2% image width. Im-

ages (k–p) show red-green opponents convolved with a DoG kernel using excitation 5%

of image width. Images (s–x) show red-green opponents convolved with a weaker DoG

kernel having excitation 5% of image width. Images originate from the visual attention

software.
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Figure 3.10: Difference of Gaussian convolution of blue-yellow opponents using three

different excitation sigma values. Images (a, i, and q) show the original image and (b,

j, and r) shows the 3-7 centre-surround blue-yellow opponent image with zero convo-

lutions. Views (c–h) show the blue-yellow opponent map with 1, 2, 3, 4, 5, and 10

convolutions respectively. The excitation function has a standard deviation of 2% image

width. Images (k–p) show blue-yellow opponents convolved with a DoG kernel using

excitation 5% of image width. Images (s–x) show blue-yellow opponents convolved

with a waker DoG kernel having excitation 5% of image width. Images originate from

the visual attention software.
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Figure 3.11: Difference of Gaussian convolution of intensity opponents using three dif-

ferent excitation sigma values. Images (a, i, and q) show the original image and (b, j,

and r) shows the 3-7 centre-surround intensity opponent image with zero convolutions.

Views (c–h) show the intensity opponent map with 1, 2, 3, 4, 5, and 10 convolutions

respectively. The excitation function has a standard deviation of 2% image width. Im-

ages (k–p) show intensity opponents convolved with a DoG kernel using excitation 5%

of image width. Images (s–x) show intensity opponents convolved with a weaker DoG

kernel having excitation 5% of image width. Images originate from the visual attention

software.
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merging the maps within feature. First, this further reinforces saliency for regions that

exist across multiple spatial scales. Second, intra-feature maps have similar saliency

across spatial scales so separately learning weights for each is redundant. Lastly, it en-

ables dimensional reduction of the learning problem. Prior to combination the system

has thirteen inputs leading to a single output; afterwards this is reduced to four inputs.

Conspicuity maps are convolved an additional five iterations and then multiplied by

an inhibition map. The process of inhibition is discussed below. A single saliency map

is then created as a weighted summation of features and iteratively convolved five times

by the difference of Gaussian kernel to introduce dynamic inter-feature competition.

A winner-takes-all network directs attention to the location of maximum saliency. To

compute winner-takes-all we use a maximum operator to imitate a dynamical system.

3.5.1 Inhibition of Returns

When viewing a scene, attention dynamically shifts between points of interest rather

than becoming fixated on a single location. In the computational model this is im-

plemented through inhibition of returns. After the winner-takes-all network directs

attention, the focal location is added to a global inhibition map as a circular region of

value zero. Inhibiting saliency in the region surrounding focus causes a shift of atten-

tion to the next most salient stimuli. After each time step the prior inhibition values

decay toward one. This computational model fully decays feature inhibition in five

time steps.

3.6 Conclusion

Saliency maps provide a biologically plausible implementation of bottom-up atten-

tional selection. In this model we include hue opponents, intensity opponents, and

motion, as the preattentive features. A simplified computation of the derived yellow

colour plane was introduced and the difference of Gaussian convolution kernel was

studied extensively. The developed model is appropriate for either a static or dynamic

environment. Other studies are often restricted to static scenes and instead of motion

they use an edge orientation feature based on Gabor filters.



Chapter 4

Learning System

4.1 Introduction

Chapter three discussed an implementation of visual attention using saliency maps.

This chapter extends the model by developing a system for learning the importance of

each feature to attentional selection. Given a series of focal points for successive image

frames, it is possible to learn an observer’s internal model of relative feature weights.

Inhibition of returns causes a shift of attention, but feature weights direct target se-

lection by controlling the cumulative saliency of each stimuli. The learning problem

determines weights that minimise saliency at unattended locations while maximising

saliency at the intended focus of attention.

4.2 Tracking Attentional Focus

4.2.1 Eye Tracker

An ISCAN eye tracking system records gaze of a human subject viewing a projected

scene. Head position remains fixed but the tracking hardware has a two degree of

freedom servo control to compensate for small movements. Infrared light illuminates

an eye and reflects off of the retina and cornea. A camera observes the reflections

and sends a picture of the eye to a computer system where threshold algorithms deter-

mine the retinal and corneal centres. Because of the external infrared illumination, eye

34
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glasses reflect too much light and interfere with system operation. Only subjects with

uncorrected vision or wearing contact lenses are suitable for experiments.

4.2.2 Calibration

Before tracking gaze, the system must first be calibrated with retinal and corneal re-

flections for known target locations. The ISCAN software system supports both a five

point and nine point calibration. With a five point the subject directs focus to the centre

and then corners of an image. The nine point calibration adds markers to the left, right,

top, and bottom.

A computer desktop with black background and icons placed in the five point pat-

tern was first used to calibrate the tracker. The subject focused on each icon in turn;

however, the large icons caused confusion about where exactly to focus and resulted

in poor calibration. Instead we developed an application to successively show white

markers against a black background. After initially displaying all calibration points,

they are turned on one at a time with the subject instructed to focus on the visible target.

Figure 4.1 shows five and nine point configurations from the calibration application.

(a) (b)

Figure 4.1: Eye tracker calibration software with (a) a five point calibration and (b) a

nine point configuration.

4.2.3 Determining Focus

Output from the eye tracking software is sent as a stream of coordinates over the serial

port. The coordinates are defined within a reference frame of 512x512 pixels with
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its origin in the upper left corner. Learning feature weights depends only on fixation

points and not on the temporal path between successive focal locations.

A first order dynamical system compares the change in position over time to detect

shifts between movement and fixation states. Coordinates from the eye tracker have

small fluctuations restricted to a local area when focusing on a single location. Moving

gaze to a new area of the scene introduces large changes in velocity before settling

again at the next point. It is not correct to simply rely on the boundary between large

and small eye movements to signify a fixation shift. Inaccuracies in calibration and

tracking can introduce occasional erroneous coordinate values that would otherwise

signal a shift of attention. Instead it is better to analyse average velocity over time. A

tracking failure returns a (0,0) coordinate so our system includes a failsafe mechanism

to immediately discard any points at the origin without further processing.

The eight most recent coordinates returned by the eye tracker are maintained within

a buffer. Two averages are computed on each addition of a new point. The first is the

average euclidean distance between the buffered coordinates and the previous fixation.

A large average distance tells that attention moved away from the previous focal loca-

tion. For the case of a single erroneous value the average does not change a sufficient

amount to register a focal shift. The second calculation is the average distance between

successive points in the buffer. When gaze attends to a particular location, the distance

between buffered points is small. If the first average is greater than a threshold value of

50 pixels and the second average is less than a threshold value of 15 pixels, gaze is pre-

sumed to be focusing on a new location. These thresholds were determined through

tests with the experimental scenes. Attentional focus is assigned to the most recent

coordinate and the system waits for the next shift of attention.

4.2.4 Adjusting for Calibration

It is difficult to calibrate the eye tracker system with an accuracy required to pinpoint

gaze on a stimuli in the projected scene. Focus coordinates are often within close

proximity of a known saliency but not on a target itself. To account for inconsistent

calibration, a nearest neighbour algorithm determines on which target the fixation be-

longs. This is possible because experiments rely on contrived images with known



Chapter 4. Learning System 37

target locations. Nearest neighbour assigns fixation to the closest target and saves its

location for learning feature weights.

The eye tracker uses a 512x512 pixel reference frame while the saliency software

assumes a 384x256 pixel image. Tracked coordinates are scaled to system coordinates

(0.75 in the x-direction and 0.50 in the y-direction) prior to saving the location for

learning.

4.3 Learning Feature Weights

From the saved attention coordinates, a least squares regression algorithm learns scalar

weights for the preattentive features. Given one or more input variables, least squares

computes a weight vector to minimise the sum squared error between actual and de-

sired output (Vijayakumar, 2004). Since this problem has four conspicuity input maps,

the regression learns weights w0, w1, w2, w3, and w4, of equation 4.1 where the vector

x̄ represents the conspicuity maps. Without a priori information the bias w0 is zero.

y 	 w0 � w1x1 � w2x2 � w3x3 � w4x4 	 w̄T x̄ (4.1)

4.3.1 Deriving Least Squares

For a system output y and desired output f
�
x � , the least squares cost function is defined

as follows.

E
�
w ��	 1

2

N

∑
i + 1

�
yi � f̂

�
xi ��� 2 (4.2)

	 1
2

N

∑
i + 1

�
yi � xT

i w � 2 (4.3)

	 1
2
�
y � Xw � T � y � Xw � (4.4)
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Minimising the cost function gives a general solution for the weight vector w̄.

∂E
∂w

	 � � y � Xw � T X 	 0 (4.5)

	 � yT X � �
Xw � T X (4.6)

	 � yT X � wT XT X (4.7)

yT X 	 wT XT X (4.8)

XT y 	 XT Xw (4.9)

w̄ 	 �
XT X � � 1XT y (4.10)

4.3.2 Input and Output Considerations

The variable X is a Nx4 matrix where each image pixel maps to a row of conspicuity

map saliency values. Since the dynamic attentional system involves decaying inhibi-

tion of returns, it is necessary to account for this as part of the least squares problem.

The conspicuity maps include saliency inhibition from previous time steps as discussed

in the computational model.

Only fixation coordinates are considered when training the system; the actual saliency

value and any other stimuli in the output map cannot be known from the eye tracker

data. In addition, the temporal shift between foci of attention is disregarded. A Nx1 y

matrix contains an ideal saliency map where a radius of twenty pixels surrounding the

point of attention contains a normalised value of one and all other pixels have value of

zero, corresponding to maximum and minimum saliency respectively. A circle of max-

imum saliency drawn around the fixation point accounts of attention falling anywhere

within a stimuli.

4.3.3 Implementation

The solution for feature weights w̄ includes the pseudo inverse X ,-	 �
XT X � � 1XT

to invert rectangular matrices (Vijayakumar, 2004). A single 384x256 pixel training

image adds 98,304 rows of four columns to the X input matrix. Additional training im-

ages append their input and output pixel values to the existing X and y matrices. With

only four training images the X matrix is of size 393,216x4 and the output matrix is of
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size 393,216x1. Calculating the input covariance matrix is computationally expensive

and storage of the 32-bit floating point covariance matrix requires 4.72GB of memory.

To solve the memory requirements we instead implemented a recursive least squares

algorithm. For further savings, any rows having all zeros for input and output do not

affect the feature weights and so are discarded.

4.3.4 Recursive Least Squares Algorithm

Recursive least squares is a method of computing feature weights without the pseudo

inverse. With a recursive algorithm the weights are available at any time during the

learning process and can later be updated with additional training data. The recursive

solution is identical to that of batch least squares equation 4.10

Tabus (2004) provides a detailed explanation of the recursive least squares algo-

rithm. λ is a forgetting factor. Here λ 	 1 so there is no decay of past results.

Pn , 1 	 1
λ
�
Pn � PnxxT Pn

λ � xT Pnx
� (4.11)

wn , 1 	 wn � Pn , 1x
�
t � wn

T x � T (4.12)

The algorithm can be broken into a series of computational steps. Given inputs x1,

x2, x3, ..., and output y1, y2, y3, ...

1. Initialise w0 	 0 and P0 	 δI where δ ��� 0

2. For each time instant n = 1 ... N

π 	 xT
n Pn � 1

γ 	 λ � πxn

kn 	 πT

γ

αn 	 yn � wT
n � 1xn

wn 	 wn � 1 � knαn

P �.	 knπ

Pn 	 1
λ
�
Pn � 1 � P ���
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4.4 Conclusion

Least squares regression uses a series of focal attention points and conspicuity maps

to learn linear weights for each feature. The complete system involves tracking an

observer’s gaze in real time and subsequently compensating for any calibration inac-

curacies with a nearest neighbour calculation. We selected the recursive least squares

solution because of computational requirements but it additionally gives flexibility to

update learnt weights if provided new training data.



Chapter 5

Implementation

5.1 Introduction

Chapters three and four discussed the computational model and learning system from

a principled approach. This chapter focuses on the system hardware including the

eye tracker and computer systems on which the software models runs. The software

architecture is also discussed, including design decisions and performance metrics.

Lastly the open source libraries used in the software are introduced.

5.2 Hardware

5.2.1 Eye Tracking System

To record gaze and visual attention, we purchased an ISCAN RK-464 eye tracking sys-

tem. Included are a desk mounted tracking unit and a workstation computer running

the ISCAN software. Figure 5.1 provides a schematic diagram of the system compo-

nents. An external source, in this case either a Sony EVI D70 video camera or a second

computer system playing MPEG files, supplies video data to the system. A video split-

ter directs the input to a capture card in the workstation and also to a LCD overhead

projector displaying the experimental scenes. The desk mounted tracking unit, shown

in figure 5.2, returns an eye image to the workstation where ISCAN software thresh-

olds and tracks gaze based on a prior calibration phase. The full setup also includes
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two television monitors. As illustrated in figure 5.3, one shows an image of the eye

for thresholding retinal and corneal reflection and the second monitor displays a copy

of the projected scene with the tracked gaze overlaid. The tracking software outputs

various data parameters for archival or processing. In this application we configure the

tracking software to stream gaze coordinate points over the serial port at 4800 baud.

Using an overhead projector, images and video are displayed on a large screen. The

projected image is 1.55 by 1.17 meters and the subject sits 2.1 meters from the screen.

Available floor space limits size and distance to the subject.

Figure 5.1: Schematic diagram of the eye tracking system.

5.2.2 Computer System

The visual attention software runs on a Dell Precision 360 workstation. On this we

installed the Fedora Core 2 distribution of the Linux operating system. The computer

has an Intel Pentium 4 3.2GHz Extreme Edition processor with hyper-threading en-

abled and 1GB of PC400 DDR RAM. A nVidia QuadroFX 500 graphics card with

dual monitor support provides simultaneous output to both a conventional monitor and

a video splitter for the eye tracking system.
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Figure 5.2: Eye tracker system.

A Pinnacle PCTV Rave framegrabber card captures real-time video from a Sony

EVI D70 series colour video camera. Communication with the framegrabber requires

the Video4Linux (V4L) API to interface with the bttv Linux kernel driver. We devel-

oped framegrabber interface software using the original V4L rather than the second re-

lease 4VL2 because the Fedora distribution does not yet support development libraries

for the latest version.

5.3 Software

Software components are written in the C programming language and compiled with

gcc 3.3.3. Libraries from several open source projects provide underlying functionality

and were selected for completeness of implementation and easy of integration into

the code base. Specifically, the Open Computer Vision library (OpenCV) simplifies

image processing, FFTW is used for fast Fourier transforms, and FFmpeg provides the

framework for MPEG video encoding and decoding.
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(a)

(b)

Figure 5.3: (a) Thresholded image of the eye seen by the tracker with crosses on the

retinal and corneal reflection. (b) Monitor display of the experimental scene with real

time gaze tracked by the white cross.
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Project source code is available in the /home/slmc/attention directory of the com-

puter vertigo.dcs.ed.ac.uk.

5.3.1 Multithreaded Architecture

To provide optimal performance with the current computer system and include mech-

anisms for upgrading to a multiprocessor machine in the future, the saliency map soft-

ware implements a partially threaded design while ensuring the internal structure is

conducive to upgrading with a fully multithreaded architecture. We use the pthreads

API because it is POSIX compatible and supported by many Unix and Unix-like oper-

ating systems. Pthreads provides an easier and lighter weight alternative to Unix pro-

cesses and the ‘fork’ command; however, it is the operating system’s role to schedule

thread execution and distribute load across the microprocessors. Nichols et al. (1996)

fully discusses pthreads and several of the traditional thread development models.

The visual attention application contains two threads. The first is a looping back-

ground process extracting frames from the framegrabber or MPEG file. Video4Linux

imposes minimal system overhead by enabling the kernel driver to directly access

framegrabber memory and registers. This thread captures frames at a consistent rate of

25 frames per second.

A second thread computes saliency maps using the model outlined in chapter three.

To simplify implementation and optimise the project for the uniprocessor computer,

saliency computation is performed in serial without dividing the work among addi-

tional threads. Computationally intensive programs run on single processor can expe-

rience a decrease in performance when dividing a task into multiple processes. The

reason is that switching execution between threads imposes additional overhead due to

stack buffering and interprocess communication. There are also design complexities to

avoid long synchronisation waits, deadlocks, and race conditions. For multiprocessor

computers, threads are required to run the application on several processors simultane-

ously. In preparation for future updates, the software application is divided into logical

components that can later be wrapped in threads.
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5.3.2 Performance Optimisation

5.3.2.1 Parameter and Size Values

At first the software used input images of 768x512 pixels with nine Gaussian pyramid

levels and ten convolution iterations per feature map. The centre-surround feature

maps used centre scale c �!� 2 � 3 � 4 � and surround s 	 c � δ where δ �!� 3 � 4 � .
For these parameters, the total number of feature maps for red-green and blue-

yellow opponents is twelve, where ten convolutions of each means a total of 120 hue

convolutions per time step. Table 5.1 outlines processing statistics for the feature

maps. With execution time of 11.007 seconds for convolving the hue feature maps,

fast Fourier convolution requires approximately 0.092 seconds for each iteration.

Operation Hue (seconds) Intensity (seconds)

Gaussian Pyramids 0.346 0.125

Convolution 11.007 5.553

Total Time 11.675 5.811

Table 5.1: Computation time for hue and intensity feature maps of 768x512 pixel im-

ages.

Convolution accounts for 94.3% and 95.6% of run time for hue and intensity fea-

tures respectively. We tested a reduced image size to determine the benefit to overall

computation time. Halving the width and height reduces image pixel count by a factor

of four. The smaller size of 384x256 pixels supports up to eight Gaussian pyramid

levels instead of nine, so we changed the centre scale to c ��� 2 � 3 � .
Table 5.2 lists updated computation times for an image size of 384x256 pixels,

eight Gaussian pyramid levels, and ten convolution iterations per feature map. Hue and

intensity computations completed 84.2% and 80.8% faster respectively. Additionally,

each convolution iteration completed in 0.0207 seconds, a 77.5% improvement.

As mentioned previously, the selected difference of Gaussian kernel enables the

the convolution iterations to be reduced from ten to five. This greatly improved sys-

tem performance since convolving feature maps accounts for the largest percentage
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Operation Hue (seconds) Intensity (seconds)

Gaussian Pyramids 0.083 0.069

Convolution 1.653 0.845

Total Time 1.840 1.118

Table 5.2: Computation time for hue and intensity feature maps of 384x256 pixel im-

ages.

of computation on each frame. The final system processes incoming video data and

selects the next point of focal attention at a rate of approximately once per second.

5.3.2.2 Software Optimisation

To achieve fast computation of saliency maps we made several optimisations to im-

prove overall system performance. All memory is preallocated at the start of the ap-

plication and is only deleted prior to exit. This includes working and temporary im-

ages, data structures, and buffers. Because the application allocates over three hundred

megabytes of memory during execution, moving this step from an inline operation to

a one-time event increased the processing rate by 57%, from 0.35 frames per second

(fps) to 0.55 fps.

The software is naturally divided into two halves by the FFT convolution of fea-

ture maps. Prior to convolution all working images are stored in OpenCV IplImage

data structures and are manipulated with functions from the OpenCV API. The re-

sult of convolution is data of type double *. Instead of converting the data back to

OpenCV format we use direct pointer arithmetic and a custom matrix library for all

post-convolution processing. The matrix library is faster than the equivalent OpenCV

functions and resulted in a further performance increase from 0.55 fps to 0.59 fps

(7.2%).

A rewrite of the framegrabber interface code to use memory registers instead of

accessing data through file handles improved image capture rate from 8 fps to 25 fps.

An additional benefit is a reduction of computational overhead. Between the rewrite of

the framegrabber access code and replacing additional OpenCV operations with direct
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pointer arithmetic, the final frame rate for the application is approximately one frame

per second.

5.3.3 OpenCV

Basic image processing uses the Open Computer Vision (OpenCV) library created by

Intel and now maintained by an open source community. OpenCV is a cross platform

toolkit supporting the Linux, Macintosh, and Windows operating systems. The latest

packaged release is beta3.1 dated 5 March 2003. The reason for selecting the older

release rather than a recent CVS snapshot is that beta3.1 is considered stable with

support readily available through a user forum.

OpenCV processes image data with matrix operations and also includes features

for working with colour planes, Gaussian pyramids, motion analysis, and displaying

images independent of platform. Other useful features such as capturing images from

a camera and working with AVI files are only supported when programming for Mi-

crosoft Windows.

Intel distributes a separate library entitled Intel Performance Primitives (IPP) to

improve performance of certain computationally expensive functions and add support

for advanced operations such as fast Fourier transforms. While OpenCV is a free open

source project, IPP is closed source and requires a license. We do not use the IPP

library and it is unknown what performance improvement could be obtained.

http://www.intel.com/research/mrl/research/opencv/

http://www.intel.com/support/performancetools/libraries/ipp/ia/opencv.htm

http://sourceforge.net/projects/opencvlibrary/

5.3.4 FFTW

FFTW is a discrete Fourier transform library whose name is an acronym for Fastest

Fourier Transform in the West. The library is written entirely in C and runs on Unix

based operating systems. As a free software project it was developed at MIT over a 35

year period and is now maintained by Matteo Frigo and Steven Johnson. In terms of

implementation, FFTW computes discrete Fourier transforms of both real and complex
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data in one or multiple dimensions.

We selected the library because of impressive benchmark results compared to other

popular open and closed source FFT libraries. FFTW is optimised for current proces-

sors and and includes support for SSE, SSE2, 3dNow!, and Altivec. In published

benchmark tests FFTW closely trails the Intel IPP library in terms of raw speed. The

API is not overly complex and documentation includes helpful examples.

http://www.fftw.org/

5.3.5 FFmpeg

The open source FFmpeg library encodes and decodes video streams. It supports a

variety of codecs and is used by many successful video and image processing appli-

cations. Though originally a project for Linux, it has since been ported to many other

platforms.

http://ffmpeg.sourceforge.net/

5.4 Conclusion

The ISCAN eye tracker is a capable system but in practise we found it very difficult to

calibrate. When viewing the upper half of the projected image a large eye angle often

resulted in the loss of corneal reflection. With stationary eye trackers, researchers

often display stimuli on a computer monitor to avoid the problems associated with

large eye angles. OpenCV simplifies development of image processing applications

but for optimal performance we preallocated memory and replaced post-convolution

OpenCV functions with pointer arithmetic and a custom matrix library.



Chapter 6

Experiments

6.1 Introduction

Thus far discussion of the dynamic visual attention system focused on theory and de-

veloping a model of bottom-up saliency maps. This chapter presents experiments in-

volving static and dynamic scenes to verify correctness of the implemented attention

model and investigate the least squares method of learning feature weights from fix-

ation points. Previous studies of saliency maps often focused on detecting targets in

natural scenes (Itti and Koch, 2000; Niebur et al., 2001; Funk, 2004) or cluttered envi-

ronments (Itti et al., 2001). These experiments instead investigate how feature weights

define fixation patterns in simple scenes.

Throughout this chapter we refer to ‘unbiased saliency maps’. This term implies a

saliency map composed from features of weight one. In an unbiased saliency map all

features contribute equally to winner-takes-all attentional selection.

6.2 Design of Experimental Scenes

6.2.1 Static Scene

Preattentive features in the model are hue, intensity, and motion. Hue is further divided

into red-green and blue-yellow colour opponent maps. The first three experiments

involve a static image without motion. Visible in figure 6.1, there are four distinct and
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Figure 6.1: Static scene used in the visual attention experiments.

well separated targets on a lightly coloured background: a rectangular blue object in

the upper right, a red circular object in the lower right corner, a yellow circular target in

the lower left, and a green rectangular shape in the upper left corner. Targets reflect the

four colour channels while their separation ensures accurate compensation of tracking

data with the nearest neighbour technique as outlined in chapter four.

6.2.2 Dynamic Scene

Experiment four employs a dynamic scene with simple motion. Visible in figure 6.2,

the dynamic environment is similar to the static image so that it retains many of the

same properties. Widely separated elements are again selected to represent the four

hues. As before, the upper right corner contains the blue target, a red object is in the

lower right, yellow resides in the lower left, and green in the upper left corner. These

four objects remains static. In the top middle of the scene is a moving red rectangle

swinging from side to side throughout the experiment.
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Figure 6.2: Dynamic scene used in the visual attention experiments.

6.3 Experiment 1: Learning Unbiased Weights in a Static

Environment

6.3.1 Defining the Experiment

The intent of the first experiment is to demonstrate functionality of the computational

saliency map model in a static environment and then show that underlying feature

weights can be recovered from a limited set of training data. Intermediate computa-

tions are displayed to confirm the software performs as expected at each step. Where

discussed in terms of saliency, greyscale images represent a gradient extending from

zero saliency (black) to maximum saliency (white).

The saliency map is constructed from red-green opponent, blue-yellow opponent,

and intensity opponent conspicuity maps, each having a feature weight of one. This

is referred to as an unbiased saliency map because all features contribute equally to

attentional selection. Motion is not a factor for static scenes.

Using the first eight unbiased attention points as training data, the least squares

learning method recovers a set of equivalent feature weights. Attentional selection
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red green

blue yellow

Figure 6.3: Four broadly tuned colour channels from the static image.

for the unbiased and learnt saliency maps is compared to determine if the weights are

representative of the original system.

6.3.2 Colour Channels

Colour channels and intensity are computed from the source image in figure 6.1.

Shown in figure 6.3, the red, green, and blue targets are each strongly visible in their re-

spective colour channels. The yellow target is represented among the yellow, red, and

green colours because yellow is derived from the RGB colour model. This is further

explained in chapter three and by equation 3.12.
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6.3.3 Conspicuity Maps

Red-green opponent, blue-yellow opponent, and intensity opponent feature maps are

created across multiple spatial scales and iteratively convolved. Figure 6.4 shows the

resulting conspicuity maps. In the red-green opponent map, the red object is highly

salient while the green is only slightly salient after dynamic competition through iter-

ative difference of Gaussian convolution. Though the yellow object is visible in both

red and green channels, computation of red-green centre-surround eliminates yellow

areas. This is due to the colour opponent equation 3.14.

While intra-feature competition suppresses the green object, the blue-yellow con-

spicuity map contains strongly salient blue and yellow features. This raises a question

of why the small blue rectangle remains salient in the colour opponents yet the green

target is suppressed by dynamic competition. Examining the colour maps of figure

6.3, because the red target is much larger than green and equally salient, green does

not survive saliency competition. In the blue and yellow colour channels, the large yel-

low feature is less salient than the smaller blue region so the blue-yellow conspicuity

map retains both targets.

Contrast between the background and the red, green, and blue objects causes those

regions to be strongly salient in the intensity feature map. Figure 6.4 shows a slight

response at the location of yellow but this is attributed to shadows on the original image

and has essentially no effect on the final saliency map. Competition suppresses yellow

because it does not pop out against the lightly coloured background.

6.3.4 Attentional Selection

For unbiased saliency, the three conspicuity maps are linearly summed without indi-

vidual scaling. Figure 6.5 shows the resulting saliency map. The first ten points of

attention and corresponding inhibitions are computed and shown in figure 6.6. Each

saliency map includes the effects of prior inhibition and indicates the focus of attention

with a white circle.

Initially the winner-takes-all network directs attentional focus to the large red ob-

ject in the lower right corner of the scene. Next most salient is the blue target since
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(a)

(b)

(c)

Figure 6.4: Conspicuity maps for the (a) red-green colour opponents, (b) blue-yellow

colour opponents, and (c) intensity opponents.
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Figure 6.5: The unbiased saliency map when all feature weights are linearly summed

without scaling.

it is present among both the blue-yellow and intensity opponents. In the third and

fourth time steps focus scans to the yellow and green objects respectively. The system

maintains this focal pattern until frame seven.

In frames eight through ten, attention moves from yellow back to red and blue prior

to focusing on the green target. In the original pattern of frames three and four, focus

shifts to green immediately following attention on yellow. Feature weights create an

internal hierarchy of priorities to direct focus, but the visual system is not entirely

predictive because inter-feature competition within the saliency map and decaying in-

hibition of returns contribute to system dynamics. Internal feature weights exist as

relative principles and not to define an exact order of element selection.

6.3.5 Results From Learning

Table 6.1 lists equivalent feature weights learnt from the first eight unbiased focal

points. For an unbiased map it is expected that the equivalent weights also have similar

values. The weights have a mean of µ 	 0 � 3549 and variance σ2 	 0 � 000453.
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Saliency Map Inhibition Map Saliency Map Inhibition Map

(Frame 1) (Frame 6)

(Frame 2) (Frame 7)

(Frame 3) (Frame 8)

(Frame 4) (Frame 9)

(Frame 5) (Frame 10)

Figure 6.6: Experiment 1: Dynamic attentional selection and inhibition in the unbiased

saliency map. A saliency map and the resulting global inhibition is shown for the first

ten time steps. A white circle defines focus of attention in the saliency maps.
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Feature Unbiased Weight Learnt Weight

Red-green colour opponents 1.0 0.335054

Blue-yellow colour opponents 1.0 0.352247

Intensity colour opponents 1.0 0.377396

Table 6.1: Experiment 1: Comparison of unbiased and learnt feature weights. The

equivalent weights have mean µ 	 0 � 3549 and variance σ2 	 0 � 000453.

For a perfectly recovered weighting model, attentional selection at every time step

will be identical to that of the unbiased response. Saliency maps built with the equiv-

alent weights may exhibit small differences from the unbiased maps but in the ideal

case this does not affect winner-takes-all selection. Learning systems perform best

when given a large amount of training data but we wish to examine how the system

performs with a limited set of coordinates.

An increasingly larger feature weight for blue-yellow and intensity opponents shows

a correlation between weight and the number of salient regions present in a conspicuity

map. For an unbiased map, the features having more objects exhibit a greater influ-

ence directing attention. This is because there is often overlap between salient regions

of conspicuity maps, so features representing fewer targets are best suited for finer

saliency adjustments.

To further verify operation of the learning model, figures 6.7 and 6.8 compare focus

in the first twenty saliency maps for unbiased attention and learnt feature weights.

Learnt focus exactly matches the unbiased case for sixteen of the twenty frames. At

time step nine and ten the two systems select the green and blue objects in a different

order. The systems again select identical attentional focus until frames nineteen and

twenty. Here the selections of yellow and green differ in priority.

Results demonstrate how with limited training data the system learnt weights that

closely mimic attentional selection of the unbiased case. The few differences in se-

lective attention confirm that the weight model gives an approximate but not exact

solution to the dynamical attention system.
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Unbiased Learnt Unbiased Learnt

(Frame 1) (Frame 6)

(Frame 2) (Frame 7)

(Frame 3) (Frame 8)

(Frame 4) (Frame 9)

(Frame 5) (Frame 10)

Figure 6.7: Experiment 1: Comparison of unbiased focal points and learnt equivalent

attentional selection for frames 1–10.
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Unbiased Learnt Unbiased Learnt

(Frame 11) (Frame 16)

(Frame 12) (Frame 17)

(Frame 13) (Frame 18)

(Frame 14) (Frame 19)

(Frame 15) (Frame 20)

Figure 6.8: Experiment 1: Comparison of unbiased focal points and learnt equivalent

attentional selection for frames 11–20.
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6.4 Experiment 2: Recovering Known Feature Weights

From Focal Attention

6.4.1 Defining the Experiment

The second experiment uses saliency maps generated from known feature weights to

recover the original weight values. For a perfectly learnt system the attentional selec-

tion with recovered weights exactly matches the training focal point at each time step.

Because the training data is based on defined feature properties, it is guaranteed that at

least one solution exists to solve the problem.

We first artificially define feature weights for the hue and intensity opponents with

the intent of giving a different attentional response than the unbiased case. The se-

lected training weights are shown in table 6.2. Saliency maps and attention points are

computed for the first twenty-one time steps. The coordinates are then used to relearn

the original feature weights. From the learnt weights, saliency maps and attentional

focus are computed for comparison to the original focus points.

Feature Training Weight

Red-green colour opponents 0.15

Blue-yellow colour opponents 0.30

Intensity colour opponents 0.40

Motion 0.0

Table 6.2: Experiment 2: Feature weights used to train the feature weights.

6.4.2 Results of Learning

The first twenty-one attention points are extracted from saliency maps to learn feature

weights. Unlike the first experiment which used a limited set of training data, all

twenty-one points contribute to learning. Table 6.3 shows the learnt weights and their

original values.
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Feature Training Weight Learnt Weight Percent Change

Red-green colour opponents 0.15 0.144596 -3.6%

Blue-yellow colour opponents 0.30 0.559240 +86.4%

Intensity colour opponents 0.40 0.473655 +18.4%

Motion 0.00 0.00 –

Table 6.3: Experiment 2: Comparison of training and learnt feature weights.

The recovered weight of red-green colour opponents is 3.6% smaller than the orig-

inal, while an increased significance is attributed to both blue-yellow and intensity

opponents. The weight of blue-yellow opponents is 86.4% higher and intensity has a

18.4% gain over its specified weight.

Saliency maps and attention points are generated to determine how representative

the learnt weights are of the original training values. Figures 6.9 and 6.10 compare

attention in the first fourteen frames for the training and learnt weights. Unbiased

saliency maps are included for comparison. A white circle on the saliency map desig-

nates the location of visual attention.

By comparing the attention points for the training and learnt saliency maps we

determine how accurately the weights reflect training data. In all fourteen points the

selection of blue and green targets is synchronised between the two systems; however,

the focus on attention is different for yellow and red regions in the scene. After every

selection of the blue target, attention directs to red in the training points but yellow in

the learnt system. This is visible in frames two, six, ten, and thirteen. Next, attention

shifts to the yellow and red respectively, followed by mutual attention on the green and

blue targets to restart the pattern.

Figure 6.11 shows larger pictures of the training and learnt saliency maps for the

second frame. In both maps the red object (bottom right) appears more salient; how-

ever, the learnt weights result in the winner-takes-all mechanism selecting the yel-

low target (bottom left) for attention. Though the yellow target has a lower average

saliency, a small bump in the centre has a higher saliency than the rest of the region. If

referring back to the original scene in figure 6.1, this bump corresponds to a protruding
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feature on the yellow object. Learning a strong weight for the blue-yellow opponents

raises the average yellow saliency toward the ideal response, but a result is that the cen-

tre patch of pixels becomes more salient than the red object and incorrectly attracts the

focus of attention. While the problem has been identified there was insufficient time to

fully investigate solutions to the issue and we instead leave it to future research.
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Training Unbiased Learnt

(Frame 1)

(Frame 2)

(Frame 3)

(Frame 4)

(Frame 5)

(Frame 6)

(Frame 7)

Figure 6.9: Experiment 2: Comparison of training, unbiased, and learnt attentional

selection for frames 1–7.
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Training Unbiased Learnt

(Frame 8)

(Frame 9)

(Frame 10)

(Frame 11)

(Frame 12)

(Frame 13)

(Frame 14)

Figure 6.10: Experiment 2: Comparison of training, unbiased, and learnt attentional

selection for frames 8–14.
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(a)

(b)

Figure 6.11: Saliency maps with attentional selection for the second time step. Im-

age (a) is constructed from the training feature weights and (b) is based on the learnt

weights.
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6.5 Experiment 3: Learning Feature Weights for a

Complex Focal Pattern

6.5.1 Defining the Experiment

The third experiment builds a contrived scenario to examine how the learning sys-

tem handles a situation not entirely solvable by linear weighting of the conspicuity

maps. Complex feature interdependencies for the training pattern highlight limitations

of conspicuity within this implementation of saliency maps. The discussion relies on

the static scene conspicuity maps displayed in figure 6.4.

A fixation pattern directs attention from green, to blue, to yellow, and lastly to the

red object. This pattern is repeated for two cycles encompassing a combined total of

eight training points. Representative feature weights are learnt using least squares re-

gression. Following we describe the attention pattern to predict the underlying weights

and demonstrate how the problem can not be fully solved with the current model.

Winner-takes-all attention is first directed at the green object. This area is only

salient in the intensity map so the intensity feature must be highly weighted. Because

saliency of the red region is also contributed by the intensity feature, for the red object

to be attended last the red-green opponency must have a very small weighting.

The second object of focus is the blue target followed thirdly by the yellow circle.

Saliency for yellow area is only affected by the blue-yellow map. For winner-takes-

all attention to focus on yellow prior to red, the blue-yellow conspicuity map must be

higher weighted than intensity opponents. The blue object would then have very high

cumulative saliency defined by both blue-yellow and intensity opponents. The saliency

of blue ensures that the green target will not be attended first as in the training pattern.

6.5.2 Results from Learning

This scenario creates a paradox where saliency for the green rectangle can not be high-

est in the saliency map due to the other feature constraints. While an exact solution

may not be possible, the least squares algorithm best fits weights to represent the train-

ing data as a whole. Table 6.4 shows weights learnt from the first eight training points.
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As predicted, red-green colour opponents receive a very small weight approaching

zero. A negative value indicates that to match the training pattern, the circular red

object repulses rather than attracts attentional selection. This is understandable given

the strong positive bias contributed by the intensity opponent feature. While defining

the experiment we examined how interrelated feature dependencies affects the ability

to model the training data. Strongly weighted blue-yellow opponents confirm that the

green target will not be attended first as in the training pattern.

Feature Relative Weight

Red-green colour opponents -0.003428

Blue-yellow colour opponents 0.287295

Intensity colour opponents 0.275939

Table 6.4: Experiment 3: Learnt feature weights.

Attentional selection for the training data and the resulting inhibition maps are

displayed in figure 6.12. A white circle designates focal attention for the first ten time

steps. Since the training pattern only specifies coordinates for the first eight frames, in

all subsequent training maps the attentional focus is determined from weights learnt in

real time.

Figures 6.13 and 6.14 show focal attention in the first fourteen saliency maps for

training data and learnt feature weights. In a perfectly learnt system the region of

maximum saliency is identical for all time steps. Unbiased saliency maps are included

for comparison.

Learnt focal attention does not select the green object in the first time step but

instead finds the blue rectangle most salient. After this initial failure at modelling the

training system, the subsequent response is fascinating. Attention in frame one of the

learnt system is the same as focus in frame two of the training data, learnt attention for

frame two is identical to attention to frame three of the training data, and so forth. A

one frame delay for attentional selection in the learnt and training data points continues

through all fourteen time steps without a single error.

Figures 6.15 and 6.16 more clearly show this pattern by delaying the learnt features
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by one time step. The inability to learn the first frame is expected, but that the learning

system accurately computes weights for the underlying training pattern is unexpected.

The intent of this experiment was to highlight a situation outside the system abilities.

Results show however that even in seemingly complicated situations the least squares

learning algorithm can often find a solution to solve large portions of the problem.
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Saliency Map Inhibition Map Saliency Map Inhibition Map

(Frame 1) (Frame 6)

(Frame 2) (Frame 7)

(Frame 3) (Frame 8)

(Frame 4) (Frame 9)

(Frame 5) (Frame 10)

Figure 6.12: Experiment 3: Saliency and inhibition maps for the training pattern of

attention.
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Training Unbiased Learnt

(Frame 1)

(Frame 2)

(Frame 3)

(Frame 4)

(Frame 5)

(Frame 6)

(Frame 7)

Figure 6.13: Experiment 3: Comparison of training, unbiased, and learnt attentional

selection for frames 1–7.
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Training Unbiased Learnt

(Frame 8)

(Frame 9)

(Frame 10)

(Frame 11)

(Frame 12)

(Frame 13)

(Frame 14)

Figure 6.14: Experiment 3: Comparison of training, unbiased, and learnt attentional

selection for frames 8–14.
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Training Learnt

(Frame 1)

(Frame 2) (Frame 1)

(Frame 3) (Frame 2)

(Frame 4) (Frame 3)

(Frame 5) (Frame 4)

(Frame 6) (Frame 5)

(Frame 7) (Frame 6)

Figure 6.15: Experiment 3: Comparison of training and delayed learnt attentional se-

lection for frames 1–7. Learnt attention exactly matches the training data when delayed

by one time step.
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Training Learnt

(Frame 8) (Frame 7)

(Frame 9) (Frame 8)

(Frame 10) (Frame 9)

(Frame 11) (Frame 10)

(Frame 12) (Frame 11)

(Frame 13) (Frame 12)

(Frame 14) (Frame 13)

Figure 6.16: Experiment 3: Comparison of training and delayed learnt attentional selec-

tion for frames 8–14. Learnt attention exactly matches the training data when delayed

by one time step.
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6.6 Experiment 4: Learning Unbiased Weights in a

Dynamic Environment

6.6.1 Defining the Experiment

The fourth experiment demonstrates functionality of a computational saliency map

model using the dynamic environment of figure 6.2. Subsequently the underlying

unbiased feature weights are determined from limited training data and are used to

compare learnt attention unbiased focal attention. Results from intermediate steps are

displayed as greyscale images representing normalised saliency values ranging from

zero (black) to maximum (white).

From eight unbiased attention coordinates, the system learns features weights for

the red-green opponent, blue-yellow opponent, intensity opponent, and motion con-

spicuity maps. The intent is to determine feature weights that mimic the attentional

response when all features are equally weighted with a value of one. Comparison to

unbiased attention for a dynamic scene demonstrates how the additional complexity of

a dynamic environment affects learning.

6.6.2 Colour Channels

Colour channels are computed from the dynamic scene and shown in figure 6.17. Re-

sults of hue calculations are identical to the static environment with the addition of a

moving red object. The red, green, and blue targets are each identified within their

respective colour channels and the yellow object is represented among the red, green,

and yellow colours. This is explained by the derivation of the yellow channel from red

and green components.

6.6.3 Conspicuity Maps

Figure 6.18 displays conspicuity maps for red-green colour opponents, blue-yellow

colour opponents, intensity opponents, and motion. The red-green conspicuity map

strongly returns the static red circular object while the smaller red and green targets
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red green

blue yellow

Figure 6.17: Four broadly tuned colour channels from the dynamic image.
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(a) (b)

(c) (d)

Figure 6.18: Conspicuity maps for the (a) red-green colour opponents, (b) blue-yellow

colour opponents, (c) intensity opponents, and (d) motion.

have slight saliency values. Because the large red target has stronger saliency, the

other two objects are suppressed by iterative convolutions.

The blue-yellow and intensity conspicuity maps return the same results as for the

static scene and so will not be discussed again. Refer to section 6.3.3 for analysis.

Dynamic scenes contain a motion feature not present in the learning problem for

a static environment. A motion history buffer determines movement and returns those

pixels as fully salient. The motion map changes at every time step with an example

visible in figure 6.18. Here the two salient regions signify a change in location between

successive image frames. For slower moving object the salient regions can overlap.
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6.6.4 Attentional Selection

The four conspicuity maps are linearly summed into an unbiased saliency map shown

in figure 6.19. Because the moving red object appears strongly among the intensity

opponents and with a maximum binary value in the motion map, it will be attended

first in the unbiased saliency map. Representation in both the colour and intensity

opponents makes the static red and blue objects the next most salient. Finally the

yellow and green objects are the last to receive focal attention because they are strongly

present in only a single conspicuity map. These predictions assume equally weighted

features.

Figure 6.20 displays saliency and inhibition maps for the first ten time steps. A

white circle denotes winner-takes-all attention in each saliency map. There is a strong

correlation between actual and predicted results until frames five and six when decay-

ing inhibition of returns makes the red targets more salient than the yet unattended

yellow. It is not until the red objects receive a second focus that the yellow target is

first attended in frame seven. Frames nine and ten reiterate a focal bias toward red with

the two targets capturing attention for the third instance.

6.6.5 Results From Learning

Table 6.5 shows feature weights learnt from the first eight coordinates of unbiased at-

tention. To analyse results of the learning mechanism we assume the conspicuity maps

are correct and review the feature weights based on the given saliency implementation.

Motion saliency combines with the intensity map to make the rectangular red object

the strongest region in the saliency map. Learnt weights for motion and intensity reflect

their importance to capturing attentional focus in the dynamic scene. Because the

colour opponents reflect other highly salient regions that are not attended until after the

moving object, the learning system determines these hue features are not as important

to focal attention and weights them lower than intensity and motion.

Figure 6.21 compares focal selection in the unbiased saliency map to the attention

pattern with learnt weight equivalents. The unbiased and learnt systems maintain an

identical focal pattern for the first six frames, but beginning in frame seven the atten-
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Figure 6.19: The unbiased saliency map when all feature weights are linearly summed

without scaling.

tional selection is not consistent between unbiased and learnt maps. Feature weights

capture system dynamics within the provided training data, but introduction of a mov-

ing target makes the learning system less accurate beyond the explicit training points.

While eight points of training data was sufficient to solve weights in the static envi-

ronment, this proved insufficient for the dynamic scene. We expect additional training

data to improve learning of the dynamic scene but were unable to verify this due to time

constraints. An interesting point for future research is to examine how many training

points are required to accurately learn feature weights for dynamic environments.

Feature Relative Weight

Red-green colour opponents 0.142274

Blue-yellow colour opponents 0.191442

Intensity colour opponents 0.319503

Motion 0.265014

Table 6.5: Experiment 4: Feature weights learnt from unbiased attention.
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Saliency Map Inhibition Map Saliency Map Inhibition Map

(Frame 1) (Frame 6)

(Frame 2) (Frame 7)

(Frame 3) (Frame 8)

(Frame 4) (Frame 9)

(Frame 5) (Frame 10)

Figure 6.20: Experiment 4: Dynamic selection of the unbiased saliency map.
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Unbiased Learnt Unbiased Learnt

(Frame 1) (Frame 6)

(Frame 2) (Frame 7)

(Frame 3) (Frame 8)

(Frame 4) (Frame 9)

(Frame 5) (Frame 10)

Figure 6.21: Experiment 4: Comparison of unbiased focal points and learnt attentional

selection for frames 1-10.
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Unbiased Learnt Unbiased Learnt

(Frame 11) (Frame 16)

(Frame 12) (Frame 17)

(Frame 13) (Frame 18)

(Frame 14) (Frame 19)

(Frame 15) (Frame 20)

Figure 6.22: Experiment 4: Comparison of unbiased focal points and learnt attentional

selection for frames 11-20.
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6.7 Conclusion

Results show that the least square algorithm is able to recover feature weights from a

series of focal attention training points. To imitate attentional selection of the training

data over many time steps, both the focal pattern and the underlying system dynamics

must be captured in the feature weights. With a static scene containing four targets,

the least squares method learnt weights that predicted future focal attention with few

mistakes. Learning weights for a dynamic environment resulted in a loss of accuracy.

We believe a larger number of training points would greatly improve learning.
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Discussion

7.1 Introduction

Chapters three and four detail a computational model of visual attention and method

to learn feature weights from eye tracking data. The sixth chapter uses these systems

in visual attention experiments and analyses the results for static and dynamic scenes.

This chapter relates experimental findings to the computational model and learning

system. Opportunities for future research are also discussed.

7.2 Feature Competition

Selecting a convolution kernel for the environment and expected targets also requires

consideration of the system computational and timing requirements. While kernels

have been proposed in literature for visual attention in natural scenes, one kernel is

not optimal for all conditions. That humans readily adapt visual attention to the envi-

ronment implies that dynamic saliency competition is not purely bottom-up as in the

saliency map model but that it is additionally controlled by top-down effects.

In the computational implementation, top-down control takes the form of select-

ing Gaussian parameters during development. As the solution space for excitation and

inhibition functions is exceedingly large, we made a brief comparison of several con-

volution kernels. However, the red-green conspicuity maps for the static and dynamic

84
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experimental scenes demonstrate the difficulty predetermining an appropriate differ-

ence of Gaussian function.

An overly strong global inhibition across the scene causes important target ele-

ments to disappear from the colour opponents. For the selected parameters cexc 	 0 � 5,

σexc 	 5%, cinh 	 1 � 5, and σexc 	 25%, the red-green opponent conspicuity map shows

reinforced saliency of the circular red area while suppressing saliency of the smaller

green region. A necessary reliance on intensity for saliency of the green object coupled

with questions regarding the fundamental relationship of intensity to visual attention

(Einhäuser and König, 2003), leads us to believe that the selected kernel is too ag-

gressive. Further studies are needed to find a general method of determining optimal

convolution kernels for saliency competition based on scene and computational re-

quirements.

7.3 Feature Weights

7.3.1 Learning from Training Data

Chapter six compares focal attention for the training data and learnt weights over mul-

tiple time steps. The learnt feature weights are summarised in table 7.1. There is a large

difference in the feature influence depending on the scene and attentional pattern, but

intensity remains strongly weighted across all experiments because it provides basic

saliency for the red, green, and blue elements. Since the yellow object is not captured

within the intensity map, the blue-yellow colour opponents are consistently influential

to account for attention directed at the yellow and blue features. The red-green colour

opponent exhibits the largest variation because in both the static and dynamic scene

it primarily controls saliency for the circular red object. The hue feature augments

intensity an needed to scale the red target for attention prior to other regions.

Comparison of attentional focus from training data and learnt feature weights de-

fines a measure of learning performance. In experiments involving static scenes, the

learnt weights general reconstructed attentional selection of the training data. Mis-

takes were often based on exchanging the selection priority of two targets and repeated

throughout the experiment.
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Feature Experiment 1 Experiment 3 Experiment 4

Red-green colour opponents 0.335055 -0.003428 0.142274

Blue-yellow colour opponents 0.352247 0.287295 0.191442

Intensity colour opponents 0.377396 0.275939 0.319503

Motion 0.0 0.0 0.265014

Table 7.1: Comparison of the feature weights across experiments.

The third experiment intended to demonstrate failure learning weights for an com-

plex problem; however, least squares regression found a partial solution previously

unknown to the authors. The learning algorithm was able to disregard the initial point

of conflict and determine weights that perfectly reflected subsequent focal points in the

attention pattern.

We introduced a dynamic scene to see how the learning system responds to a more

difficult situation. The dynamic scene introduces a fourth input parameter and fifth

salient region while continuing to learn with eight training points. Unlike in the static

scene, the learnt feature weights fail to track attention beyond the explicit training

locations. Future study with a larger training set is needed to validate the learning

system in dynamic scenes.

7.3.2 Improving the Learning System

During development of the learning system in chapter four, we noted that the least

squares algorithm equally weights errors for all pixels. The regression simultaneously

tries to maximise saliency at the intended fixation point and minimise saliency else-

where. While technically correct this is an overzealous approach. A more optimal

solution may be found by recognising that several salient locations can coexist so long

as the strongest is located at the correct fixation point. Future research into learning

visual feature weights can improve the least squares regression method by providing a

stronger bias toward minimising saliency errors at the point of attention.
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7.4 Conclusion

The saliency map and learning implementation demonstrates varying degrees of suc-

cess when extracting feature weights from points of focal attention. We suggest two

areas for future research: parameterization for difference of Gaussian functions and

tailoring the least squares algorithm to bias errors at the focus of attention. With im-

provements in both areas, future systems could optimise focal attention to changing

environmental conditions in real-time.
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Conclusion

8.1 Research Summary

This thesis developed a biologically plausible computational model of visual attention

based on saliency maps. To the study of visual attention, the research contributes a

novel approach of learning preattentive feature weights from eye tracking data. This

work also provides insight into modelling attention within dynamic scenes and high-

lights the need for continued effort to define a robust means of parameterising intra-

feature saliency competition.

Three experiments with static scenes demonstrated that feature weights can ac-

curately be determined from focal coordinates. The system learnt conspicuity weight

values that account both for underlying preferences of hue and intensity and also the at-

tentional dynamics of feature competition and decaying inhibition of return. A fourth

experiment of learning feature weights from a dynamic scene was less accurate and

illustrated that additional training data is needed to account for the extra dynamical ef-

fects. We proposed an updated algorithm for learning a more optimal weight solution.

8.2 Future Research

There are many opportunities for continued research into the biological foundation and

methods of attention. Going forward it is important to compare learnt feature weights

88
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to human performance in similar novel scenes. It is thought that weight models can be

extracted and categorised based on individual and scene properties. This requires care-

ful consideration to isolate bottom-up control from the influence of top-down effects.

Another aspect for future research is a focus on how top-down control manipulates

the underlying feature weights for a particular scene or task. The existing model of

saliency maps is entirely bottom-up though ongoing research attempts to integrate top-

down direction into the model (Vaingankar, 2004). By understanding the effect of

environment and top-down control on feature weights, an appropriate weight model

could be selected for a particular situation. Here we suggest learning feature weights

for various individuals and environments. Predictive models could be used to select an

appropriate feature weight model based on environmental properties.

As implemented, the system learns only from visual attention coordinates in a

scene and discards the temporal path between fixation points. Gaze contains additional

information about the importance of unattended feature components. By incorporating

scan paths into the learning algorithm a more robust understanding of system dynamics

can be achieved. This is especially useful as scene complexity increases to the point

where training patterns do not include focus on every saliency object.

8.3 Applications

There are several applications for a physiological understanding of the visual atten-

tion system. Transmitting variable resolution video signals reduces bandwidth re-

quirements by only enhancing detail in salient regions (Parkhurst, 2002). With the

integration of autonomous mobile robots in hospitals and semiconductor fabrication

(fab) clean rooms, there is an increasing need to provide advanced visual sensing to

cope with the dynamic environment. An equally if not more important application is

to gain understanding of our own human biology.
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